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A stochastic Lotka-Volterra model, a so-called pulse-type model, for the interaction between two species and
their random natural environment is investigated. The effect of a random environment is modeled as random
pulse trains in the birth rate of the prey and the death rate of the predator. The generalized cell mapping method
is applied to calculate the probability distributions of the species populations at a state of statistical quasista-
tionarity. The time evolution of the population densities is studied, and the probability of the near extinction
time, from an initial state to a critical state, is obtained. The effects on the ecosystem behaviors of the prey
self-competition term and of the pulse mean arrival rate are also discussed. Our results indicate that the
proposed pulse-type model shows obviously distinguishable characteristics from a Gaussian-type model, and
may confer a significant advantage for modeling the prey-predator system under discrete environmental
fluctuations.
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I. INTRODUCTION

The interest in prey-predator systems has recently experi-
enced a rapid growth due to their intrinsic relevance in mod-
ern population biology and ecology �1–11�. In this context,
for some decades much effort has been devoted to math-
ematical modeling of the dynamics of interacting species
through nonlinear, yet deterministic, set of coupled differen-
tial equations �3�; one of the best-known models is the
Lotka-Volterra �LV� model, which describes the time evolu-
tion of two interacting species: a prey population that grows
with a constant birth rate in the absence of a predator species,
while the predator population decays with a constant death
rate without the presence of a prey species �12,13�. Indeed,
since living organisms experience competition with individu-
als of other species or of their own species, the LV competi-
tive model is quite realistic as the prototype of competitive
systems �1,14–17�.

It is widely believed that interaction between species and
their natural environment greatly influences the global fea-
tures of ecosystems �14,18–28�. Therefore, a species can sur-
vive if it is able to adapt itself to the fluctuations arising in
the environment. Such fluctuations are ubiquitous in all as-
pects of nature �e.g., temperature, rainfall, pollution, disaster,
etc.� and may drastically modify the deterministic predic-
tions of the coexistence of the species, and therefore they
inspire intense discussion among ecologists �20,21�. Gauss-
ian white noise variations are usually added to the predator
death rate and prey birth rate to model the continuous envi-
ronmental fluctuations �1,14,18�. However, to gain some
more realistic and general understanding of the effect of en-
vironmental fluctuations leading to extinction of the species,
it is highly desirable to adopt so-called stochastic pulse trains
rather than Gaussian white noise as the description of fluc-
tuations. One of the main reasons is to account for discrete
and drastic actions. In fact, the Gaussian white noise always

assumes the presence of continuous perturbations, while in
real systems there are some unavoidable sparse, yet drastic,
impulses which may qualitatively change the system behav-
ior and even completely invalidate the deterministic predic-
tions. As a consequence, the stochastic perturbations are in-
trinsically non-Gaussian and a discrete fluctuation model is
preferred.

In this paper, we develop a different LV model, of so-
called pulse type, which describes the behaviors of two in-
teracting species under discrete environmental fluctuations.
While the picture is relatively clear for a stochastic LV
model under Gaussian white noise excitation �14�, the role of
a stochastic pulse train apparently has never been studied.
The stochastic pulse train under consideration here is mod-
eled as Poisson white noise. The generalized cell mapping
�GCM� method �29–32� is applied to obtain the probability
distributions of the predator and prey populations in a state
of statistical quasistationarity. Furthermore, we present a glo-
bal analysis of evolutionary processes that involves popula-
tion distribution. As a main finding the near extinction prob-
ability after starting from a fixed point is obtained.

II. PULSE-TYPE LOTKA-VOLTERRA MODEL

A. The model

For a well-mixed population, the proposed pulse-type sto-
chastic LV model describes the time evolution of the popu-
lation densities for the species; it reads

Ẋ1 = X1�g1 − c1X1 − c2X2� + X1�1�t� ,

Ẋ2 = X2�− g2 + c3X1� + X2�2�t� , �1�

where X1�t��0 and X2�t��0 are two stochastic processes,
representing the population densities of prey and predator
species, respectively, and the overdot stands for the time de-
rivative. �In the present paper, capital letters stand for sto-
chastic processes or stochastic variables, while lowercase let-
ters stand for deterministic quantities.� Each species is*Corresponding author. wqzhu@yahoo.com
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characterized by the natural growth �mortality� rate gi�0
and the competition parameter ci�0. The interactive terms
c2X1X2 and c3X2X1 are, respectively, the relative decrease
�increase� of the prey �predator� populations due to predation
and provide a balance between the two species, and −c1X1

2 is
the so-called prey self-competition term due to the natural
fact that the energy resources consumed by the prey are ex-
haustible. �1�t� and �2�t� are two independent Poisson white
noises defined as �33�

��t� = �
k=1

N�t�

Yk��t − tk� , �2�

where ��·� is the Dirac delta function and N�t� denotes a
Poisson counting process with mean arrival rate ��0 �i.e.,
the mean number of � impulses per unit time� and gives the
number of pulses that arrive in the time interval �0, t�;
�Yk , k�1� is a collection of real-valued identically distrib-
uted independent random variables; Yk represents the random
magnitude of the impulse, which is independent of the pulse
arrival time tk.

Poisson white noise ��t� is characterized by its correlation
functions

R�n����t1�,��t2�, . . . ,��tn�� = �E�Yn���t2 − t1� . . . ��tn − t1�
�3�

�n = 1,2, . . . ,�� ,

where E�·� denotes the mathematical expectation value. For
the limiting case when � approaches infinity and, at the same
time, the intensity of the Poisson white noise I=�E�Y2�
keeps a constant value, the cumulants of orders higher than 2
tend to zero, and the Poisson white noise ��t� tends to Gauss-
ian noise.

B. The deterministic counterpart

To understand the importance of external fluctuations and
their effects on the population distribution and extinction
probability, we examine first the deterministic counterpart of
Eq. �1�, namely,

ẋ1 = x1�g1 − c1x1 − c2x2� ,

ẋ2 = x2�− g2 + c3x1� , �4�

where the term −c1x1
2 models the effect of intraspecific com-

petition. The system �4� admits at most three equilibria in the
first quadrant: two unstable saddle points at E1, �0,0� �total
extinction�, and E2, �g1 /c1 ,0� �extinction of the predator�,
and one nontrivial stable equilibrium state at E3, �g2 /c3 , �g1
−g2c1 /c3� /c2� �coexistence of prey and predator�. The x2 and
x1 axes are, respectively, the stable and unstable manifolds of
E1. The x1 axis is the stable manifold of E2. There is a het-
eroclinic orbit which connects the two distant saddle points,
starting from E1, walking along the x1 axis, and ending in E2.
Local stability analysis yields the eigenvalues
−c1g2 / �2c3���−4c3

2g1g2+c1
2g2

2+4c1c3g2
2 / �2c3� for the sta-

bility matrix of E3. So E3 is an asymptotic stable fixed point

for c1�0, while for c1=0 it becomes a neutrally stable fixed
point and the system �4� possesses a first integral

H�x1,x2� = c3x1 + c2x2 − g2 ln
c3x1

g2
− g1 ln

c2x2

g1
− g1 − g2,

�5�

where H�x1 ,x2��0 is the conserved quantity and H�x1 ,x2�
=0 at the equilibrium E3. The phase plane is thus segregated
into a collection of nested closed orbits, where each one is
characterized by a different value of H, as illustrated in Fig.
1�a�. Also depicted in Figs. 1�b� and 1�c� are two trajectories
of system �4�, corresponding to two different values of c1
=0.05 and 0.2, respectively, and with the same g1=1, g2
=0.5, c2=1, and c3=0.5 �all parameter values are nondimen-
sionalized in the present paper�. The motion of the system
begins from the point �3.5,1.5�. It was found that the popu-
lations of species show the following asymptotic behaviors
depending on the value of c1. �i� In the absence of the prey
self-competition term, there is a neutrally stable fixed point
�g2 /c3,g1 /c2� surrounded by periodic closed orbits which de-
pends only on the initial states. �ii� When the prey self-
competition term is present, both populations exhibit an os-
cillation with decreasing amplitude. It spirals inward from
the initial point �3.5,1.5�, eventually reaching the asymptotic
stable equilibrium �g2 /c3,�g1−g2c1 /c3� /c2�, and the speed of
approach is proportional to c1. The angular velocity of the
cyclic motion is plotted against time in Fig. 2, and is shown
to become regular after several cycles. Also the motion
shows a periodic tendency. Without any external perturba-
tion, the deterministic LV model predicts in general the co-
existence of both species.

C. Generalized cell mapping method

Since the nonlinear system with Poisson white noise re-
veals an inherently non-Gaussian nature, the exact solution
to this system is not available even for a simple two-species
pulse-type LV model. Hence, quite advanced techniques may
be required to find approximate solutions to the problem. In
the past few decades, considerable effort has been made and
a GCM method has been developed for the global analysis of
nonlinear dynamical systems �29–32�.

The GCM method is an effective and efficient method for
stochastic analysis of the proposed pulse-type LV model. It is
performed by considering the population evolution process at
discrete time instants and by discretization of the state space;
hence the time- and state-space continuous Markov vector
process is reduced to a Markov chain. The time axis is di-
vided into small time intervals �t and px�x0 , ti� denotes the
probability density function �PDF� at the time ti= t0+ i�t, i
=0,1 ,2 , . . .. The PDF at the subsequent instant ti+1, is given
by the convolution integral

px�x,ti+1� = 	
R2

qx�
x,ti+1
x0,ti�px�x0,ti�dx0, �6�

where qx�
x , ti+1
x0 , ti� is the transition PDF of the state vec-
tor from the state x�t0�=x0 at the time ti to the state x�t�=x at
the time ti+1, and R2 is the phase space.
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If the time interval �t is short enough and if the mean
arrival rate � is low, it follows from the Poisson law that the
probability of occurrence of more than one impulse in this
time interval may be neglected and the following asymptotic
form of the transition probability density may be assumed:

qx�
x,ti+1
x0,ti� = P0�
ti+1
ti�qx
�0��
x,ti+1
x0,ti� + �1 − P0�
ti+1
ti��

	qx
�1��
x,ti+1
x0,ti� + O„���t�2

… , �7�

where

P0�
ti+1
ti� = Pr�N�ti+1� = 
0
N�ti� = 0� = exp�− ��ti+1 − ti�� ,

�8�
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FIG. 1. �Color online� Trajectories of system �4� starting at
�3.5,1.5� for three different prey self-competition parameters c1

= �a� 0, �b� 0.05, and �c� 0.2.
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FIG. 2. �Color online� Angular velocity of the cyclic motion of
system �4� starting at �3.5,1.5� for three different prey self-
competition parameters c1= �a� 0, �b� 0.05, and �c� 0.2.
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qx
�0��
x,ti+1
x0,ti� = �„x1 − x1�
ti+1
x0,ti�…�„x2 − x2�
ti+1
x0,ti�…

�9�

is the transition probability density conditional on no im-
pulse arrival, and x�
ti+1
x0 , ti� denotes the deterministic drift
from the initial state x0 at t= t0 obtained from the initial value
problem originating from Eq. �4�. Surely Eq. �7� is satisfied
at best for sparse pulse trains where � is small. Algorithms
have been devised for evaluation of qx

�1��
x , ti+1
x0 , ti� �31�.
The phase plane R2 is discretized into a finite number N

of small cells, called the cell state space Z2. In this paper, we
assume that cells in Z2 are rectangular in shape and of equal
size, and each cell is indexed by an integer. The probability
of being in the kth cell at the time ti is

Pk
�i� = 	

Ck

px�x,ti�dx , �10�

where Ck is the domain occupied by the kth cell in Z2.
Equation �6� can be approximated by the evolution equa-

tion of a discrete Markov chain in the cell state space Z2 as
follows:

Pj
�i+1� = �

k=1

N

QjkPk
�i�, �11�

Qjk = 	
Cj

qx�
x,ti+1
xk,ti�dx , �12�

where Qjk, the element in the jth row and kth column of the
one-step transition probability matrix Q, represents the prob-
ability of the system being in the jth cell at time ti+1 when
the system is initially in the kth cell with probability 1, and
xk is the center of the kth cell. The transition probability Qjk
will not depend on time ti conditional on a stationary Markov
process. The most interesting feature of the GCM method is
that the one-step transition probability matrix Q contains
global properties of the system in the cell state space and
also governs temporal evolution of the probability vector P,
provided that an initial vector P�0� is specified. Once Q is at
hand, the complete evolution history of the system can be
computed simply by iterating Eq. �11�,

P�i� = QP�i−1� = QiP�0�. �13�

The stationary distribution P��� may be obtained as i→�.
Obviously, P���=QP���, determining P��� as the normalized
eigenvector associated with the largest eigenvalue �=1 of
the matrix Q.

Since extinction occurs when the population of the spe-
cies decreases to a critical value and crosses the barrier, the
barrier is regarded as absorbing. In the cell state space, all
the cells lying inside the extinction domain E are called sink
cells, for which the one-step transition probability should be
represented as Qjk=� jk, j�E. Then, the extinction time
probability at ti for a system originally in some nonextinction
cell k can be evaluated in the following way:

Pext
�i� = �

j�E
Pj

�i�, Pj
�0� = � jk. �14�

D. Monte Carlo simulations

We carried out extensive stochastic simulations to support
and corroborate our results. The simulation results are ob-
tained by generating independent time series of the com-
pound Poisson process and integrating Eq. �1� numerically
using the Runge-Kutta scheme to obtain the corresponding
time series of the population density. The near extinction
time probability is estimated with sample averages over
40 000 realizations.

E. Quasistationary population probability distributions

In this section, we focus on the quasistationary population
density probability distributions of the proposed pulse-type
LV system �1�. Here the term “quasistationary” indicates the
state of statistical stationarity, which means that the statistics,
such as the probability density function, do not change with
respect to time until the extinction of one species. For illus-
trative purpose, the parameters g1=1, g2=0.5, c2=1, c3
=0.5 were assigned, and the quasistationary distributions of
the species populations were obtained by the GCM method.
The computation domain is taken to be �0,3�	 �0,2�. It is
divided into 600	400 cells of dimensions 0.005 units. The
mapping step time �t is chosen to be 1.5. Shown in Figs. 3
and 4 are the quasistationary probability densities p�x1� and
p�x2� of the prey population X1�t� and the predator popula-
tion X2�t�, respectively, with mean arrival rate �1=�2=0.1
and intensity I1= I2=0.005 of the Poisson white noises. Also
depicted in Figs. 3 and 4 are results obtained from the Monte
Carlo �MC� simulation. The agreement between both results
is good.

In order to show the non-Gaussian characteristics of the
pulse-type LV model, the quasistationary population prob-
ability distributions of the traditional stochastic LV model,
for which the environmental fluctuations are modeled as
Gaussian white noises, are also computed by using MC
simulation and included in Figs. 3 and 4. There is no doubt
that the non-Gaussian behavior of the system depends on the
mean arrival rate � of Poisson white noise �33�. However,
the inherent characteristics of the prey-predator system
should also be taken into account. Here we focus on the
effects of changing the prey self-competition parameter c1.
Three different self-competition intensities corresponding to
c1=0.1, 0.2, and 0.3, respectively, are considered. It is shown
that the quasistationary PDF of the pulse-type model is much
peakier than that of the Gaussian one. With increasing c1, the
distinction between the two cases becomes more remarkable.

F. Time evolution of the population probability

One of the major advantages of the GCM method as a
global analysis approach is that it can depict not only the
quasistationary solution, but also the complete evolution his-
tory of our pulse-type LV system simply by iteration of the
evolution equation of the Markov chain �13�. Figure 5 shows
the time evolution of the population probability at 5, 10, 20,
and 50 iterations, when it is initially distributed at its coex-
istence fixed point �1,0.9� with probability 1. The evolution
history corresponding to another deterministic initial condi-
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tion �2,1.5� is reported in Fig. 6. In both cases, the system is
assigned the same parameters as those in the previous sec-
tion, i.e., g1=1, g2=0.5, c1=0.1, c2=1, c3=0.5, �1=�2=0.1,
I1= I2=0.005, and mapping step time �t=1.5. It is seen from
these figures that the population distribution shows a station-

ary tendency after 50 iterations despite the different initial
states.

G. Near extinction probability

The probability that one or both species die out in the
course of time is of special interest within population dynam-
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FIG. 3. �Color online� Probability densities of the prey popula-
tion obtained for three different prey self-competition parameters
c1= �a� 0.1, �b� 0.2, and �c� 0.3.
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FIG. 4. �Color online� Probability densities of the predator
population obtained for three different prey self-competition param-
eters c1= �a� 0.1, �b� 0.2, and �c� 0.3.
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ics from the biological viewpoint �14,21,34�. While the de-
terministic LV model with self-competition term −c1X1

2 pre-
dicts the existence of one asymptotic fixed point, associated
with the coexistence of all the species, resulting in regular
oscillations of the population densities, the fluctuations aris-
ing in the system dramatically invalidate this picture and
play an essential role in the discussion of extinction: Starting
at the fixed point, after long enough time one of the two
species dies out. From a realistic perspective, we expect the
coexistence of the species to be in a harmonious state, that is,
the state for each species population is within moderate lim-
its. The situation of a very low species population should be
avoided as much as possible. For this purpose, it is useful to
investigate the time it takes for the species population to
move from a normal level to a critically low one, so that
effective measures can be designed and applied to avoid its
happening, or to lengthen the transition time. We address this
issue by introducing an artificial absorbing barrier at low
species population densities rather than the natural absorbing
boundary where the species densities vanish, and studying
the transition time probability for near extinction. Intuitively,

each trajectory performs a drift-jump process in the phase
portrait and interpolates between the deterministic cycles.
Assume that the impulse arrives at the time t1 with the
strength Y1. Up to the time t1 the system is performing a
deterministic drift from the initial state x0 at time t0. At time
t1 a discontinuous change of the state of magnitude Y1 takes
place. Then the system continues performing deterministic
drift with a modified initial value. The process continues
until the trajectory eventually hits the artificial absorbing
boundary of the cell state space. A first indication of the
actual emergence of this scenario can be inferred from the
stochastic trajectory shown in Fig. 7.

In our formulation, the near extinction probability corre-
sponds to the probability that after time t the population has
reached a critical state xic. The same system parameters were
selected for numerical calculation, i.e., g1=1, g2=0.5, c1
=0.1, c2=1, c3=0.5, and the noise intensities I1= I2=0.01
were assigned. The initial populations were assumed to be at
their equilibrium state, i.e., x1=g2 /c3=1, x2= �g1
−g2c1 /c3� /c2=0.9. Without loss of generality, the critical
values were chosen to be x1c=x2c=0.1, at which the popula-

(a)

(b)

(c)

(d)

FIG. 5. �Color online� Snapshots of contour pictures of the time evolution of the population probability at different instants when initially
distributed at its coexistence fixed point �1,0.9� with probability 1. �a� 5, �b� 10, �c� 15, and �d� 50 iterations.
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tion were near extinction. The near extinction time probabil-
ity Pext calculated by the GCM method is shown in Fig. 8,
accompanied with MC simulation results. The agreement be-
tween the two results is very good. As is well known �31�,
the accuracy and the stability of the GCM results are highly
dependent on the transition time step �t, the cell sizes �xi,
and the mean arrival rate �i. The crucial assumption, affect-
ing the accuracy of the obtained results that only one pulse
arrives in the transition time sets limits for �i and �t as
��i�t
1. Therefore, an increase in the mean arrival rate
must be accompanied by a shorter time step to guarantee
higher accuracy. Shown in Fig. 8�a� are the results obtained
for �1=0.1 and varying �2. Those obtained for �2=0.2 and
varying �1 are shown in Fig. 8�b�. Also depicted in Figs. 8�a�
and 8�b� are results for the Gaussian white noise case with
the same intensities I1= I2=0.01. It is seen from these two
figures that the pulse-type LV model has significant distin-
guishable characteristics from the Gaussian one, and the
mean arrival rate plays an important role in detrmining the
near extinction time. With a decreasing mean arrival rate, the
near extinction time becomes shorter. This reveals the natural

(a)

(b)

(c)

(d)

FIG. 6. �Color online� Snapshots of contour pictures of the time evolution of the population probability at different instants when initially
distributed at �2,1.5� with probability 1. �a� 5, �b� 10, �c� 15, and �d� 50 iterations.
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FIG. 7. �Color online� A single stochastic trajectory obtained
from MC simulation. It walks out from the fixed point, eventually
reaching the absorbing boundary.
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fact that a sparse pulse excitation, which corresponds to
higher probability of a dominant single fluctuation, has a
more remarkable effect in reducing the survival probability
of the prey-predator ecosystem than a dense one, even if the
two excitations share the same noise intensity. Comparing
Figs. 8�a� and 8�b�, the effect of �2 is seen to be greater than
that of �1. Since the proposed pulse-type LV model satisfies

some basic phenomena of natural reality by taking discrete
and drastic fluctuations into consideration, it has an advan-
tage over the traditional Gaussian one.

III. CONCLUSION

Environmental fluctuations acting on ecosystems can be a
source of new phenomena which may qualitatively change
the system behavior, eliciting the extinction of species. The
Gaussian assumption is usually made in the modeling of
noise. While Gaussian white noise provides an efficient
model of various environmental actions, for a broader class
of realistic fluctuations such as pollution, disasters, rainfall,
etc., the assumption of Gaussianity is not justified by the
natural evidence. So there has been sustained interest in re-
search into a stochastic ecosystem model under pulse-type
disturbances that originate from discrete events. Motivated
by this realistic requirement, we propose a pulse-type LV
model to describe the behaviors of the prey-predator ecosys-
tem under discrete fluctuations. The pulse-type fluctuations
are modeled as Poisson white noises. The species interaction
is also taken into account by including the prey self-
competition term. Since an exact solution is unavailable due
to the inherently non-Gaussian nature of the problem, the
GCM method is adopted to investigate the transient and qua-
sistationary probability distributions of the species popula-
tions, and also the near extinction time probability is ob-
tained. The validity of the GCM method is proved by MC
simulations. We pay special attention to the effects of the
prey self-competition parameter c1 and pulse mean arrival
rate �i. Our analysis and numerical simulations reveal that,
with a larger c1 and a smaller �i, the proposed pulse-type LV
model shows significantly different behavior from the Gauss-
ian one. It is also found that the near extinction time prob-
ability is sensitive to �i. For a given time, the survival prob-
ability decays with a sparser pulse excitation. We suggest
that more attention should be paid to the dynamic behavior
of prey-predator ecosystems under continuous perturbations
and discrete fluctuations.
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